Fluorination of Hydroxyesters with N,N-Diethyl-1,1,2,3,3,3-Hexafluoro Propaneamine

S. Watanabeo', T. Fujitao, M. Sakamotoo, T. Araio, and T. Kitazumeb

Department of Applied Chemistry, Faculty of Engineering, Chiba University, Yayoicho, Chiba, Japan 260, and ^bDepartment of Bioengineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan 152

The reactions of N,N-diethyl-1,1,2,3,3,3-hexafluoro propaneamine (PPDA) with β -hydroxyl esters gave their corresponding fluorides. For example, methyl (S)-(+)-3-fluorobutyrate was obtained from the reaction of methyl (R)-(-)-3-hydroxybutyrate with PPDA. The reaction of α -hydroxy esters with PPDA gave a mixture of their corresponding fluorides and 2,3,3,3tetrafluoropropionate esters. However, γ - and δ -hydroxyesters did not give their fluorinated compounds. Hydrolysis of those racemic monofluoroesters with Lipase MY gave optical active monofluorocarboxylic acids and esters.

Fluorinated compounds have been widely utilized in biochemical and industrial investigations. Fluoroalkyl amino Reagent (FAR) and diethyl amino sulfur trifluoride (DAST) are useful fluorinating reagents for various alco-

TABLE 1

Fluorination of β -Hydroxyesters with PPDA

hols. Recently, we reported that N,N-Diethyl-1,1,2,3,3,3hexafluoro propaneamine (PPDA, Ishikawa reagent) is useful as a fluorinating reagent for fatty alcohols (1) and various diols (2). However, the reactions of various aliphatic hydroxyesters with PPDA have not been studied in detail. In this paper, the reactivity of hydroxyesters, chemical structures of the products and reaction conditions of the fluorination reaction were studied systematically. Hydrolysis of these mnofluoroesters with Lipase MY (Candida cyclindracea, Meito Sangyo Co. Ltd.) gave optical active monofluorocarboxylic acids.

EXPERIMENTAL

The reaction products were analyzed by gas-liquid chromatography (GLC) on a Shimadzu Model GC-3BF Chromatograph using a 3 m × 3 mm column of 15% Silicone DC 200 on 60-80 mesh Celite 545. ¹H NMR and ¹⁹F NMR spec-

	$\begin{array}{c} OH \\ R_1 \swarrow \\ R_2 R_3 \\ (A) \end{array} \begin{array}{c} OH \\ COOR_4 \\ (A) \end{array}$			$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$		R ₄ R ₁	$\begin{array}{c} R_1 \\ R_1 \\ R_3 \\ (C) \end{array} COOR_4$		
	Hydroxye			Reaction Time	(B)	(C)		¹⁹ F NMR of (B)	
Ri	\mathbf{R}_2	R_3	R_4	(hr)	Yield (%)*5	Yield (%)			
CH ₃	Н	Н	Me'1	3	40*2	0	+93.3(ddqd)	J(F-Hb)=48.0 $J(F-CH_3(a))=24.0$	J(F-Hc)=22.5 J(F-Hd)=16.0
CH3	Н	H	Et	3	38	0	+90.3(ddqd)	J(FH)=42.3 J(F-CH ₃)=20.7	J(FH)=20.7 J(FH)=15.1
C_2H_5	н	н	Me*3	3	38*4	0	+100.8(m)		
$\tilde{C_3H_7}$	Н	н	\mathbf{Et}	3	50	3	+101.3(m)		
C ₄ H ₉	Н	Н	\mathbf{Et}	3	61	5	+99.3(m)		
$_{5}H_{11}$	Н	Н	Et	3	81	10	+98.7(m)		
C_7H_{15}	Н	н	Et	3	68	14	+98.7(m)		
$C_{9}H_{19}$	Н	Н	Et	3	56	17	+98.5(m)		
$C_{11}H_{23}$	н	Н	Et	3	41	20	+98.3(m)		
$C_{5}H_{11}$	н	CH_3	Et	3	35	38	+102.3(m)		
$C_{7}H_{15}$	Н	CH_3	Et	3	39	38	+102.0(m)		
$C_{9}H_{19}$	Н	CH_3	Et	3	43	58	+101.0(m)		
$C_{11}H_{23}$	Н	CH_3	Et	3	38	50	+101.7(m)		
C_4H_9	CH ₃	Н	Et	10	63	0	+68.5(qm)	J(FH)=16.9	
$C_{5}H_{11}$	CH ₃	Н	Et	10	66	0	+75.3(qm)	J(FH)=16.5	
$C_{6}H_{13}$	CH_3	Н	Et	10	74	0	+75.1(qm)	J(FH)=16.2	
$C_{7}H_{15}$	CH ₃	н	\mathbf{Et}	10	65	0	+69.7(qm)	J(FH)=16.0	

^{'1}R(-)-form $[\alpha]_{D}^{18}$ =-23.23 ^{'2}S(+)-form $[\alpha]_{D}^{18}$ =+6.65 ^{'3}R(-)-form $[\alpha]_{D}^{18}$ =-13.9 ^{'4}S(+)-form $[\alpha]_{D}^{18}$ =+2.20

'5The yield was calculated as isolated yields.

*To whom correspondence should be addressed.

tra were obtained using CDCl₃ as a solvent on a Hitachi Model R-24 spectometer. The chemical shift values are expressed in δ value (ppm) relative to a TMS internal standard (¹H NMR), and ppm values relative to an external CF₃COOH (¹⁹F NMR, positive values upfield). IR spectra were obtained on a JASCO Model IR-G infrared spectrophotometer. Hydroxyesters were prepared by Reformatsky reaction or reduction of corresponding ketones.

Fluorination of β -Hydroxyesters with PPDA. As a typical method using fractional distillation, fluorination of methyl (R)-(-)-3-hydroxybutyrate (I) is shown in the following pages. A solution of PPDA (10.0 g, 44.8 mmol) in CH₂CL₂ (20 cc) was added dropwise into a solution of I (2.05 g, 17.4 mmol) ($[\alpha]_D^{28} = -23.23$) in CH₂CL₂ (10 ml) at room temperature. The reaction mixture was treated as reported previously (1) to give 1.02 g of methyl (S)-(+)-3fluorobutyrate (II) boiling at 71-79C at 200 mmHg. It showed the following properties: $[\alpha]_D^{28} = +6.65$; IR (cm⁻¹): 1730; ¹H NMR (δ , ppm): 1.37 (3H,dd,J (CH₃-F)=24.0 Hz, J(CH₃-H)=6.75 Hz, CH₃(a)), 2.35 (1H,ddd,J(Hc-F)=22.5 Hz, J(Hc-Hd)=16.0 Hz, J(Hc-Hb)=6.0 Hz, Hc), 2.65(1H, ddd,J(Hd-F)=16.0 Hz, J(Hd-Hc)=16.0 Hz, J(Hd-Hb)=6.0 Hz, Hd), 3.40(3H, s, -COOCH₃), 5.00 (1H, dq, J(Hb-F)=48.0 Hz, J(Hb-CH₃(a))=6.75 Hz, Hb); ¹⁹F NMR

Hb Hc

$$|$$
 $|$ $|$
CH₃^a- C - C - COOCH₃ (II)
 $|$ $|$
F Hd

TABLE 2

Fluorination of α -Hydroxyesters and	Other Hydroxyesters with PPDA
---	-------------------------------

Hydroxyester	Product	Yield ^a (%)	CF_3	¹⁹ F NMR (δ,ppn CHF		(Hz)
α-Hydroxyesters						
Ethyl 2-Hydroxybutyrate	Ethyl 2-(2,3,3,3-tetra- fluoropropyloxy)-butyrate	31	-1.67(dd)	+126.0(dq)	J(HF)=6.6 J(HF)=41.4	J(FF)=10.5 J(FF)=10.5
	Ethyl 2-Fluorobutyrate	10		+125.7(dddq)	J(FH)=38.5 J(FH)=18.8	J(FH)=19.7 J(FH)=9.4
Ethyl 2-Hydroxypentanate	Ethyl 2-(2,3,3,3-tetra- fluoropropyloxy)-pentanate	42.1	-1.63(dd)	+126.(dq)	J(FH)=6.2 J(HF)=41.1	J(FF)=10.2 J(FF)=10.1
	Ethyl 2-Fluoropentanate	13.4		+125.7(m)		
Methyl 2-Hydroxy-4- methylpentanate	Methyl 2-(2,3,3,3-tetra- fluoropropyloxy)-pentanate	43	-1.65(dd)	+126.0(dq)	J(FH)=6.1 J(FH)=41.0	J(FF)=10.0 J(FF)=10.3
	Methyl 2-Fluoro-4- methylpentanate	15		+126.0(m)		
Ethyl 2–Hydroxy– octanoate	Ethyl 2-(2,3,3,3-tetra- fluoropropyloxy)-octanoate	10	-1.64(dd)	+126.0(dq)	J(FH)=6.4 J(FH)=41.1	J(FF)=10.3 J(FF)=10.0
	Ethyl 2-Fluorooctanoate	3		+125.9(m)		
thyl 2-Hydroxy- decanoate	Ethyl 2-(2,3,3,3-tetrafluoro- propyloxy)-decanoate Ethyl 2-Fluorodecanoate	$\frac{3}{1}$				
	Ethyl 2-Fhorodecanoate	1				
lethyl 2-Hydroxy- palmitate	_					
fethyl 2-Hydroxy- stearate	_					
)ther Type Hydroxyesters						
Methyl (S)-(+)-3-Hydroxy- c-methylpropionate $[\alpha]_{15}^{15}$ =+26.8	Methyl (S)-(+)-3-fluoro- 2-methylpropionate $[\alpha]_{D}^{15}$ =+3.12	20		+141.2(td)	J(F-CH ₂)=41.4 J(F-CH)=16.9	
lethyl 4,4,4-Trichloro- 3-hydroxybutyrate	Methyl 4,4,4-Trichloro- 3-(2,3,3,3-terafluro- propionyl)-butyrate	45	-2.33(dd)	+123.7(dg)	J(FF)=12.4 J(FH)=39.5	J(FH)=7.5 J(FF)=12.4
Ethyl 4-Hydroxypentanate	_					
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_					
Ethyl 10– Hydroxyundecanoate						
Methyl 12-Hydroxystearate	_					

^aThe yield was calculated as isolated yield.

	Lipase MY		∠ COOH	
(A) Fluoroesters(A) R	Reaction Time hr	(B Conversion (%)	B) (C) (B) $[\alpha]_D^{22}$ (EtOH, c) (C)	
C_5H_{11}	2.0	37	+4.54(1.08)	-1.21(1.00)
C_5H_{11}	2.5	44	+3.90(1.00)	-2.36(1.02)
C_5H_{11}	3.0	48	+2.42(1.02)	-2.44(1.04)
C7H15	2.0	34	+3.78(1.02)	-2.00(1.00)
C7H15	3.0	45	+2.54(1.04)	-3.04(1.00)
C7H15	4.0	50	+2.65(1.00)	-3.13(1.04)

TABLE 3

Hydrolysis of β -Fluoroesters

(δ, ppm): +93.3, ddqd J(F-Hb)=48.0 Hz, J(F-Hc)=22.5 Hz, J(F-CH₃(a))=24.0 Hz, J(F-Hd)=16.0 Hz, -CHF-).

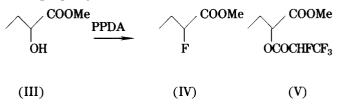
As a typical method using liquid chromatography, fluorination of ethyl 3-hydroxydecanoate is shown as follows. A solution of PPDA (4.5g, 20.0 mmol) in CH₂Cl₂ (10 ml) was added dropwise into a solution of the hydroxyester (2.2 g,10 mmol) in CH₂Cl₂ (25 ml) at room temperature. The reaction mixture was treated in the same manner to give the residous oil. The crude product was chromatographed with silica gel using n-hexane (90 volume), containing ethyl acetate (10 volume), to give ethyl 3-fluorodecanoate (1.3 g, yield 58%) and ethyl 2-decenoate (0.37 g, yield 14%). Ethyl 3-fluorodecanoate showed the following spectral data: IR(cm⁻¹): 1728; ¹H NMR (δ,ppm): 0.88 (3H,t, J=4.8 Hz, -CH₂CH₃), 1.21 (3H,t, J=7.0 Hz, $-OCH_2CH_3$), 1.2 - 1.6 [10H, m, $-(CH_2)_5$ -], 1.6 - 1.9 (2H,m,-CH₂CHF), 2.2 - 2.7 (2H,m,-CH₂CO), 4.04 (2H, q_{J} =7.0 Hz,-OCH₂CH₃), 4.1 - 5.4 [1H,m,-CHF);¹⁹F NMR (δ , ppm): +98.7 (m, -CHF-). Ethyl 2-decenoate was confirmed by comparing with its authentic sample.

Other hydroxyesters were treated with PPDA in the same manners, and the results are listed in Tables 1 and 2.

Hydrolysis of Ethyl 3–Fluorodecanoate with Lipase MY. Lipase MY (Candida cyclindracea, Meito Sangyo Co. Ltd.) (2.0g) was dispersed in a mixture of 1/15 Molar/l solution of sodium hydrogen phosphate (18 ml) and 1/15Molar/l solution of potassium dihydrogen phosphate (7 ml). Ethyl 3-fluorodecanoate (1.4 g, 6.4 mmol) was added to this solution. The mixture was agitated for 4 hours at 38 C. After adding diluted hydrochloric acid to pH 3, the mixture was extracted with diisopropyl ether. The ether extract was washed with saturated sodium chloride solution several times, dried over anhydrous sodium sulfate, filtered and then evaporated to remove the solvent. The residue was chromatographed over a column of silica gel eluting with n-hexane which contained increasing amounts of ethyl acetate; each 10 ml fraction was collected. Elution with n-hexane/ethyl acetate (100:50 v/v)gave pure 3-fluorodecanoic acid (0.59 g, yield 42%), and elution with n-hexane/ethyl acetate (100:10 v/v) gave ethyl 3-fluoro decanoate (0.58 g, yield 41%). 3-Flourodecanoic acid showed the following data: IR(cm⁻¹): 1708; ¹H NMR (δ , ppm): 0.87 (3H,t, J=5.0 Hz, CH₃-), 1.1-1.7 [10H,m,-(CH₂)₅-], 1.7-2.1 [2H,m,-CH₂CHF-), 2.4-3.0 [2H,m,-CH₂CO-), 4.3-5.5 [1H,m,-CHF), 11.54 (1H,s,-COOH); ¹⁹F NMR (δ ,ppm): +100.0 (m,-CHF-); [α]_D²² =+2.65 (c=1..00, EtOH). The angle of rotation of ethyl 3-fluorodecanoate was [α]_D²² =-3.13 (c=1.04, EtOH)).

Other 3-fluoroesters were treated with Lipase MY in the same way, and the results are listed in Table 3.

RESULTS AND DISCUSSION


It is known that PPDA is a useful fluorination reagent for saturated primary alcohols (1) and various diols (2). However, the reactions of most secondary alcohols with PPDA give the corresponding fluoride, or 2,3,3,3-tetrafluoropropionate, in only low yields. Undesirable side reactions such as dehydration, isomerization and dimerization of alcohols are often present in higher yields. The present paper describes the reactions of a variety of types of aliphatic hydroxyesters with PPDA.

The reactions of β -hydroxyesters with PPDA gave their corresponding fluorides. For example, methyl (S)-(+)-3-fluoro-butyrate (II)([α]_D²⁸ =+6.65) was obtained from the reaction of PPDA with methyl (R)-(-)-3-hydroxybutyrate (I)([α]_D²⁸ =-23.33). As is similar with aromatic hydroxyester containing a PhC(H)(OH)-group (3), it is suggested that fluorination of aliphatic hydoxyesters by PPDA involves an S_N2 reaction pathway. From other 3-hydroxyesters, corresponding fluorides were obtained as their main product. The reaction of α -alkyl-substituted-

 β -hydroxyesters with PPDA gave mixtures of their corresponding fluorides and their dehydrofluorided esters as shown in Table 1. Fluorination of higher 3-hydroxyesters such as 3-hydroxystearic acid did not give a fluorine compound.

From the reactions of lower α -hydroxyesters with PPDA a mixture of fluoride and tetrafluoropropinate ester was obtained. For example, a mixture of methyl 2fluorobutyrate (IV) and methyl 2-(2,3,3,3-tetrafluoropropionyloxy)-butyrate (V) was obtained from the reaction of PPDA with methyl α -hydroxybutyrate (III). From the reaction of higher α -hydroxyesters such as methyl α hydroxypalmitate, their corresponding fluorides or tetrafluoropropionyl esters were not obtained.

From the reaction of γ -hydroxyesters such as ethyl 4hydroxy-pentanoate with PPDA, fluoride or tetrafluoropropionate were not obtained. The reaction of ethyl 10hydroxyundecanoate with PPDA gave a dehydration product. These results are listed in Table 2. As reported previously (4), ω -hydroxyesters can be fluorinated. The hydrolysis of monofluoroesters with enzyme (lipase MY) was examined. The use of an excess of water at 38-40C as a solvent was the best condition for the preparation of the monofluorocarboxylic acid. Interestingly, we have found that racemic 3-fluoresters can be optically separated into (+)-acid and (-)-esters. For example, 3-fluorodecanoic acid ($[\alpha]_D^{22} = +2.65$) and ethyl 3-fluorodecanoate ($[\alpha]_D^{22} = -3.13$) were obtained from racemic ethyl 3-fluorodecanoate by the action of enzyme (lipase MY). These results are shown in Table 3.

REFERENCES

- 1. Watanabe, S., T. Fujita, K. Suga and I. Nasuno, J. Am. Oil Chem. Soc. 60: 1678 (1983).
- 2. Watanabe, S., T. Fujita, I. Nasuno, and K. Suga J. Am. Oil Chem. Soc. 61: 1479 (1984).
- 3. Watanabe, S., T. Fujita, Y. Usui and T. Kitazume J. Fluorine Chem. 31: 247 (1986).
- 4. Watanabe, S., T. Fujita, M. Sakamoto, H. Endo and T. Kitazume J. Am. Oil Chem. Soc. 64: 874 (1987).

[Received November 15, 1988, accepted February 8, 1989.] [J5601]